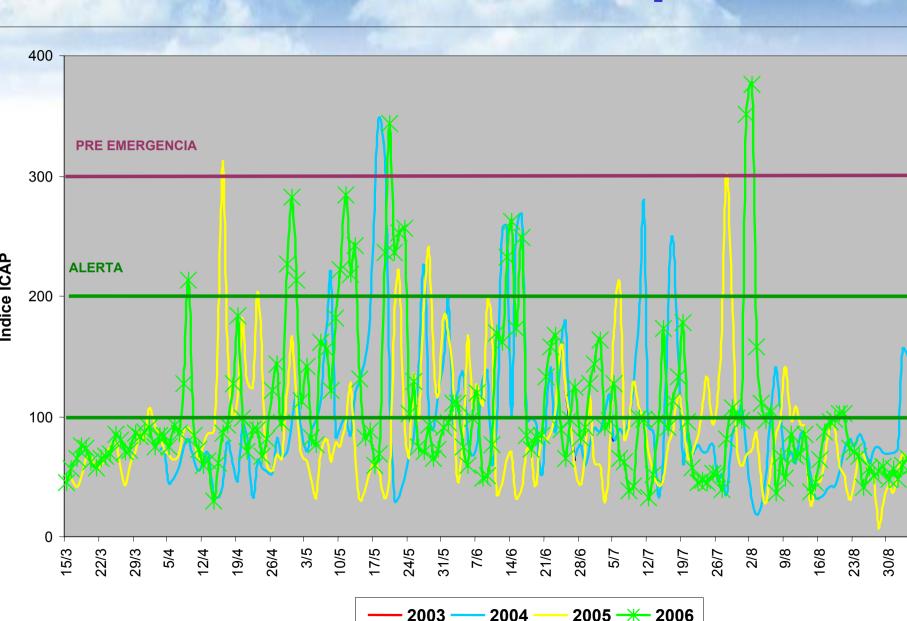
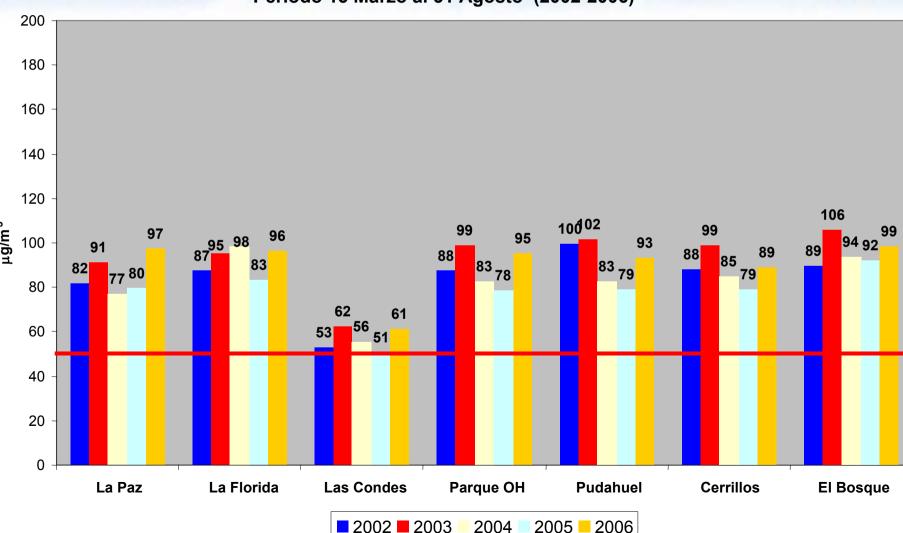
PROPUESTA DE REDISEÑO GESTIÓN DE EPISODIOS CRÍTICOS POR MP10 en el Marco de la 2ª Actualización del PPDA

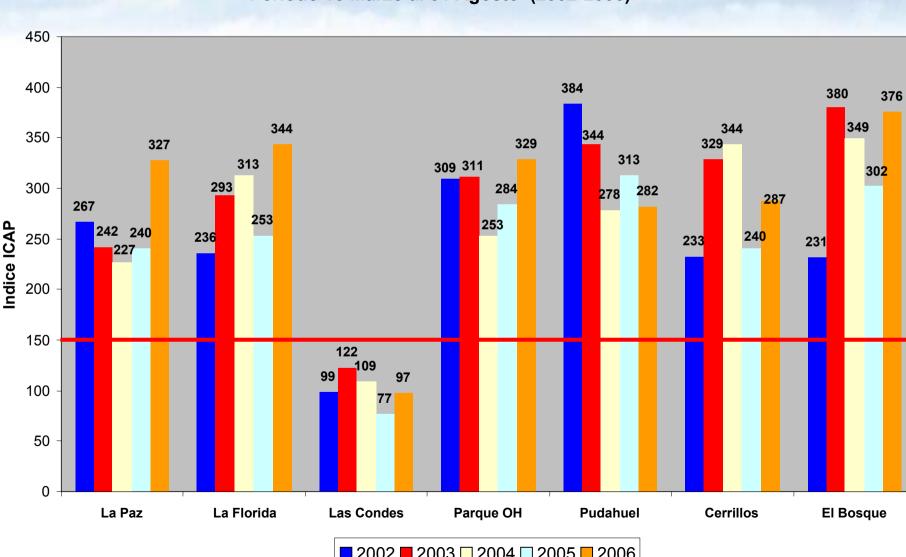


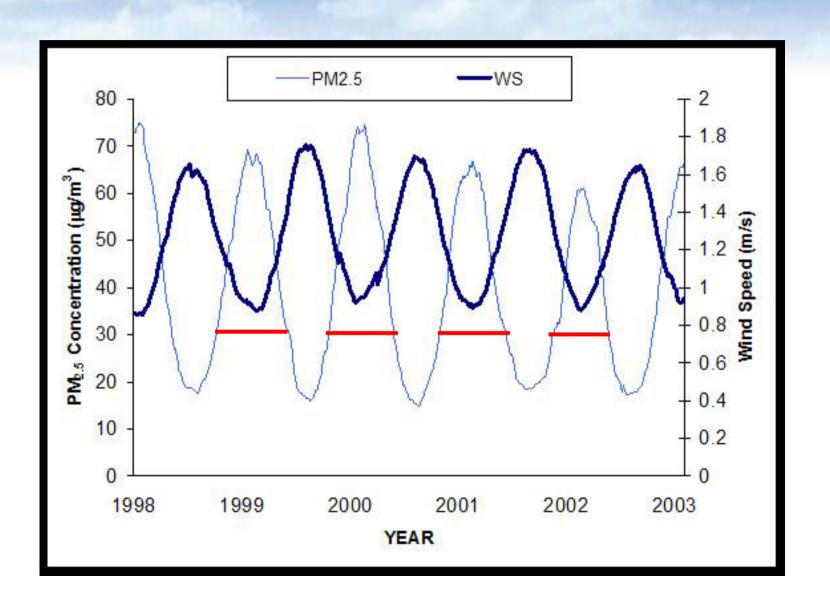
Marcelo Fernández G.

Jefe Área Descontaminación Atmosférica Conama Metropolitana de Santiago mfernandez.rm@conama.cl www.conamarm.cl

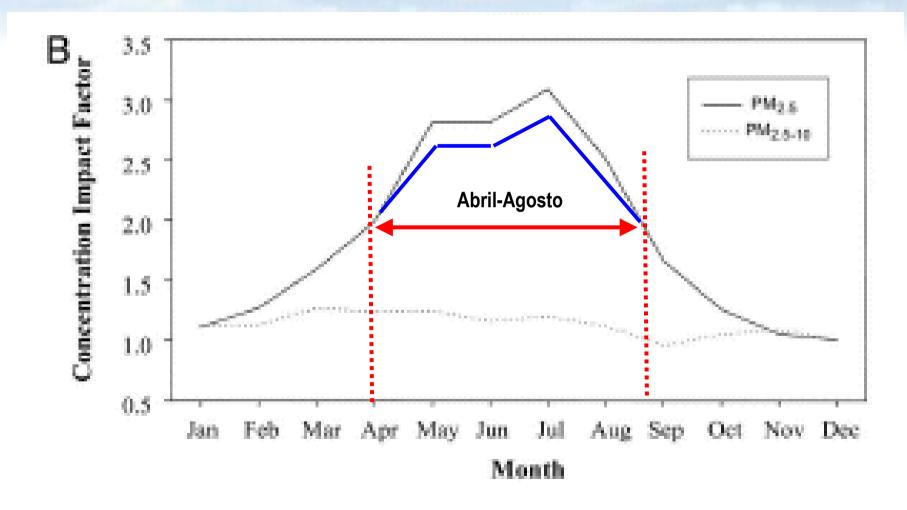

SEGUNDA REUNIÓN COMITÉ AMPLIADO

Periodo de Gestión de Episodios


Concentraciones Promedio, Periodo de GEC



Concentraciones Máximas, por Estación


Máximos ICAP registrados por Estación Período 15 Marzo al 31 Agosto (2002-2006)

Aumento del Impacto en Salud

Aumento del Impacto en Salud

Fuente: análisis retrospectivo de filtros. Harvard 2003

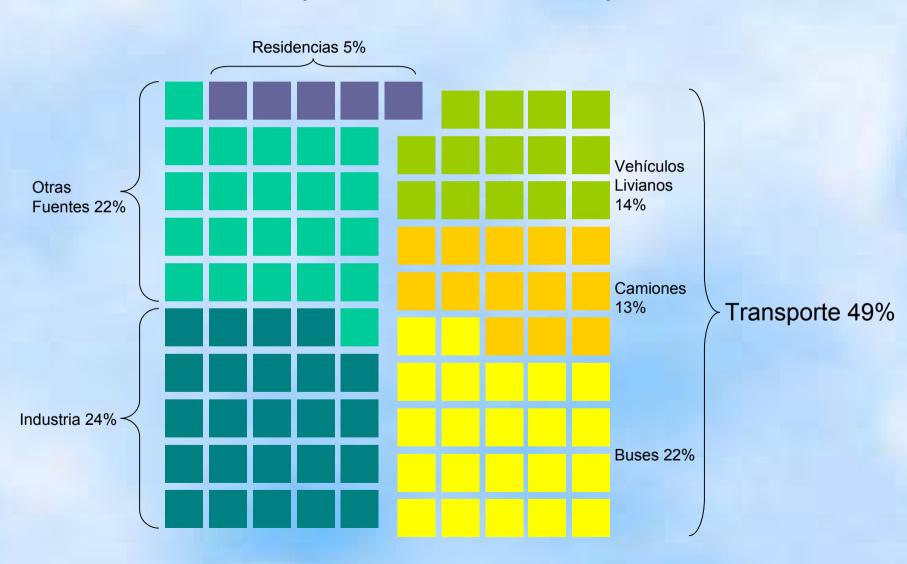
Problemas Detectados

- → La discusión se centra en el modelo de pronóstico
- → Errores de pronóstico generan sensación de improvisación
- Sólo en los días en que se alcanzan altos niveles se informa a la población
- → Algunas medidas que se implementan han perdido efectividad con el tiempo.
- → La reducción de emisiones que se alcanza en forma permanente y en episodios es reducida.
- Algunas medidas son complejas de fiscalizar en los días de episodio.
- Persiste un alto nivel de superación del nivel de alerta y norma de 24 horas

Qué se propone para mejorar la GEC?

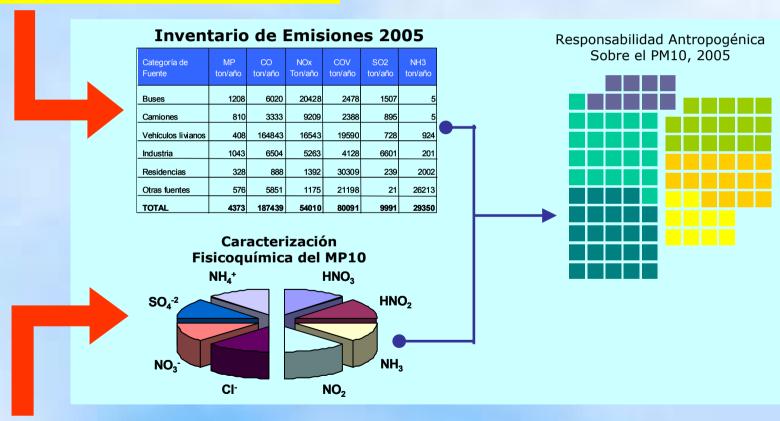
- Aumentar las medidas que se implementan en forma permanente, con un enfoque preventivo durante todo el periodo de mala ventilación.
- Fiscalización permanente durante todo el periodo de GEC, con énfasis en los episodios.
- Usar el modelo de pronóstico para informar a la población la calidad del aire y para la implementación de medidas adicionales en eventos de preemergencia (2 ó 3 veces por año)
- Mantener una difusión permanente para:
 - Reducir la exposición
 - lograr un mayor nivel de cumplimiento de las medidas

Metodología

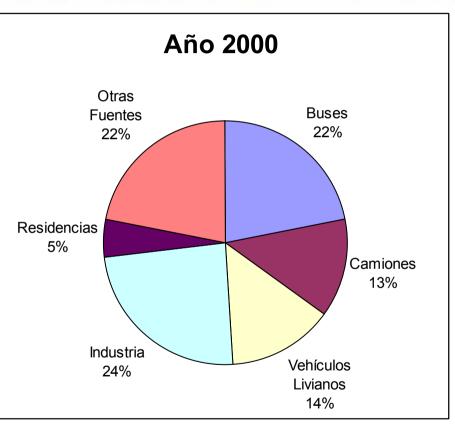

- Mesas de trabajo con servicios competentes para identificar medidas que permitan reducir emisiones en el periodo de GEC:
 - Transportes
 - Industrial / Residencial
 - Quemas Agrícolas
 - Otras Medidas
- → Paralelamente, se están desarrollando consultorías que apoyarán la generación de los antecedentes necesarios.
- → Las alternativas de control que se identifiquen, serán evaluadas en términos del costo beneficio (reducción de emisiones, impacto en calidad del aire, impacto en salud, costos)

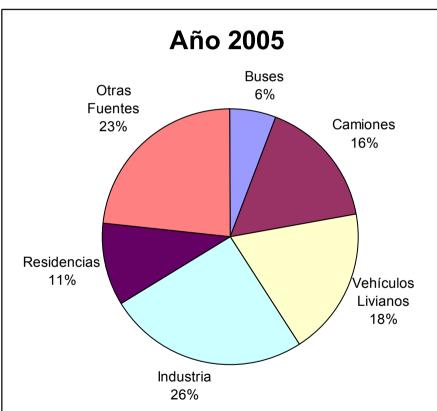
Criterios para definición de Medidas para el Periodo de GEC

- → Deben generar una reducción significativa de emisiones
- → Deben apuntar en el mismo sentido que las medidas estructurales.
- Deben operar como un incentivo a la mejora tecnológica
- → Deben ser implementables para el invierno 2007
- → Deben ser fiscalizables


Propuesta de Rediseño Plan Operacional de Episodios Críticos de Contaminación Atmosférica

Responsabilidad Antropogénica Sobre el PM10 (Escenario 2000)


Metodología de Estimación de la Responsabilidad Antropogénica Sobre el PM10 (Escenario 2005)


nventario de Emisiones de la Región Metropolitana 2005 Proyecciones al 2010 (DICTUC) En Desarrollo

aracterización Antropogénica del PM10 y PM2.5, scenario 2005 (USACH) Terminado

Estimación Preliminar de la Responsabilidad Antropogénica Sobre el PM10 (Escenario 2005)

Objetivo del Rediseño

Generar una GEC adecuada a las <u>nuevas</u> condiciones de la Región Metropolitana y que sea coherente con la Actualización del PPDA.

Este rediseño se hará con un enfoque preventivo, con énfasis en la difusión a la comunidad

Medidas Permanentes (1°Abril -31 Agosto)

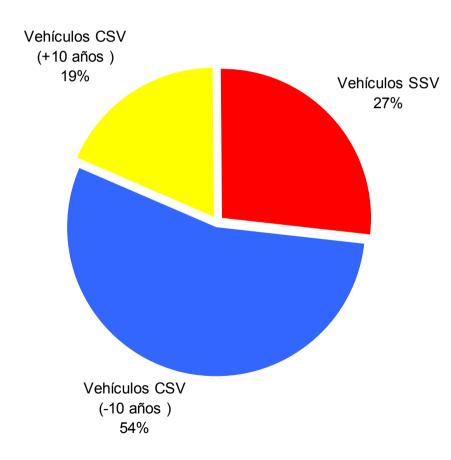
- → Aumento de la restricción vehicular permanente
- → Medidas de gestión de tránsito permanente tendientes a privilegiar el transporte público.
- Aumento del periodo de prohibición de quemas agrícolas (1° Abril-31 Agosto)
- → Restricción al consumo de leña residencial en la zona urbana.
- → Programa de Lavado y Aspirado de Calles

Medidas en Preemergencia

- Aumento de la restricción vehicular, en vehículos csv y ssv
- → Implementación de medidas de gestión de tránsito.
- → Revisión de límites de paralización industrial u otra alternativa para reducir emisiones en el sector
- Intensificación del programa de lavado y aspirado de calles.

Control de Emisiones del Transporte

Restricción vehicular Gestión de Tránsito


Restricción Vehicular

Escenario	Estado	Nº dígitos	Nº Vehículos afectados
	Permanente (5 mar-31dic)	2 dig ssv	45.544 (5,4%flota)
	Alerta	4 dig ssv	91.087 (10,8%flota)
Restricción Actual	Preemergencia	6 dig ssv, 2 dig csv	136.631 123.792 total:260.423 (30,8%flota)
	Emergencia	8 dig ssv 4 dig csv	182.174 247.584 total: 429.758 (50,8%flota)

Parque Vehicular 2005

Nº vehículos	Porcentage
227.718	26,9%
618.959	
	73,1%
460.712	
	54,4%
158.247	
	18,7%
846.678	100,0%
	227.718 618.959 460.712

Distribución del Parque Vehicular R.M. (2005)

Restricción Vehicular

Escenario	Estado	Nº dígitos	Nº Vehículos afectados
	Permanente	2 dig ssv	45.544 (5,4%flota)
	(5mar-31 dic)	A dia agra	01.007
Propugate 1	1° abril-31 agosto	4 dig ssv	91.087 (10,8%flota)
Propuesta 1 Restricción		6 dig ssv,	136.631
Restriction	Preemergencia	4 dig csv	247.584
			Total: 384.215
			(45% flota)
		8 dig ssv	182.174
	Emarganaja	6 dig csv	371.375
	Emergencia		Total: 553.549
			(65% flota)

Restricción Vehicular

Escenario	Estado	Nº dígitos	Nº Vehículos afectados
Propuesta 2 Restricción	Permanente (5 mar-31 dic)	2 dig ssv	45.544 (5,4% flota)
	1° abril-31 agosto	4 dig ssv y 2 dig csv con más de 10 años de antiguedad	91.087 31.650 Total: 122.737 (14,5 % flota)
	Restricción en preemergencia	6 dig ssv y 4 dig csv con más de 10 años de antigüedad	136.631 63.299 total:199.930 (23,6% flota)
	Restricción en emergencia	8 dig ssv y 6 dig csv con más de 10 años de antigüedad	182.174 94.948 total: 277.122 (32,7% flota)

MEDIDAS DE GESTION EN PERIODOS CRITICOS

1.- Aumentar Capacidad Vial en Horarios Puntas:

- Prohibición de estacionamiento en vías de flujos vehicular superior a 600 veh/hr.
- -Prohibición de carga y descarga en la vía pública.
- -Coordinación con UOCT en tiempos de semáforos

2.- Privilegiar Transporte Público:

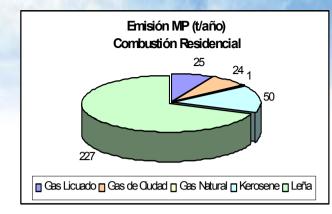
- -Pistas o vías segregadas.
- -Control de paraderos

Control de Emisiones Quema de Biomasa

Control de quemas agrícolas Control de leña residencial

Control de Quemas Agrícolas

QUEMAS LEGALES TEMPORADA 2005 - 2006.					
MES	N° DE AVISOS	SUPERFICIE (Hà)			
septiembre/05	1128	1953,16			
octubre/05	609	1068,04			
noviembre/05	438	435,57			
diciembre/05	474	1180,39			
enero/06	8	185,00			
febrero/06	600	1173,71			
marzo/06	719	1289,93			
abril/06	649	1877,47			
TOTAL	4625	9163,27			


329 ton PM10

	abril	Mayo - Agosto	Septiembre
Nº de Quemas	649	447	1128
Nº de Hectáreas	1877.47	76.36	1953.16
Emisión MP10	67 Ton	2.73 Ton	70 Ton

Antecedentes para el control de la Combustión Residencial de Leña

200	Antecedentes	Principales Resultados
1	CNE – INTEC, 1992	Medición de emisiones de artefactos, encuesta uso y consumo de leña, 1992.
2	Inventario de emisiones. CENMA, 2000	Revisión y uso factor de emisión US-EPA.
3	Inventario de Emisiones. DICTUC, 2001	Actualiza nivel de actividad en base a CASEN.
4	Diagnóstico del Mercado de leña. CNE, 2005.	Proyección consumo 1992 al 2003.
5	Informes de medición de calefactores (11)	Emisiones método 5H (4,2 a 12 g/h)
6	Medición de 4 estufas. SERPRAM, 2006.	Emisiones método 5G
7	Recomendaciones de límites de emisión. T.Nusbaumer 2004-2005-2006.	Recomendaciones respecto a valores, unidades para expresar límites de emisión. Utilidad de valores contenidos en PPDA- Cap. VII y su objetivo ambiental.
8	Medición de estufa chilena en Suiza. COSUDE, 2005	Emisiones y conteo de partículas. Variación de las emisiones de acuerdo a modo de operación, leña húmeda o seca, tecnología de combustión. Recomendación de F.E. local.
9	Bases Técnicas para la Norma de Emisión de Artefactos de Combustión a Leña. CONAMA, 2006.	Descripción del sector de fabricantes. Descripción del calefactor tradicional usado en Chile. Recopilación de experiencia internacional de valores de emisión y medidas en episodios.
10	Auditoría Internacional del PPDA, 2005	Auditores Recomiendan prohibición

nventario de Emisiones CENMA, 2000

ente: Actualización Inventario Emisiones 2000. Cenma

Nivel de Actividad: Estudio INTEC-CNE, 1992.

Factores de Emisión: US - EPA

Consumo de Leña	Año 2000 Cenma	
Informal [t/año]	12.371	
Formal [t/año]	3.053	

Inventario Emisiones DICTUC, 2001

Participación por Combustible en el Total de Emisiones Combustión Residencial

COMBUSTIBLE	COV	CO	NOx	SOx	MP	NH ₃
COMBOSTIBLE	t/año	t/año	t/año	t/año	t/año	t/año
GLP	51,90	131,51	647,48	0,48	19,91	1,2
GN	12,43	44,20	103,58	0,69	12,62	575,8
GC	8,23	29,26	68,58	0,46	8,36	0,1
Kerosene	44,88	90,00	324,02	535,86	45,00	11,3
Leña	140,02	1896,68	107,27	0,00	875,93	59,3
Total	257,5	2191,7	1250,9	537,5	961,8	647,

Fuente: Estimación DICTUC

Nivel de Actividad: Encuesta CASEN, año 2000

Factores de Emisión: US - EPA

Consumo de Leña	Año 2000 Dictuc
Informal [t/año]	51.405
Formal [t/año]	3.053

Estudio CNE – INTEC, 1992: Indica que el 19,4% de las viviendas del Gran Santiago usan leña para calefacción, el consumo total se calcula en 148.714 m³ sólidos

Diagnóstico del Mercado de leña. CNE, 2005: Se proyecta para el año 2003 en la RM un consumo de leña residencial de 82.470 m³ sólidos (Urbano) y 7.663 m³ sólidos (Rural)

Resultados Medición Estufa Chilena (Proyecto COSUDE, 2005)

Table 1: Particle emissions in mg/m³ at 13 Vol.-% O₂ according to EPA, data according to VDI are given in brackets.

Operation	Wood	Water content Log size	Stove 1 Chile stove	Stove 2 Swiss stove	Stove 3 Two-stage stove	Remarks
Ideal operation with small, dry wood logs and fuel hopper of stove 1 and 2 only 30% filled* without start-up	Beech	w = 12% m _{log} = 750 g	20	40	10 – 20	Operation is not relevant for practice but can be simulated in approval tests, hence approval tests need to be performed under reasonable conditions
including start-up			50	50	20 - 30	as above
 Typical operation for heating, i.e., fuel hopper well filled** 	Beech or Roble	w = 20% m _{log} = 1500 g	250 – 1200 (125 – 600)	150 – 250 (100 – 125)	30 – 50 (30 – 50)	Two-stage combustion enables app. 90% reduction
	Roble	w = 33% $m_{log} = 1500 g$	500 – 1200 (250 – 600)	not measured	60 - 150 (50 - 100)	Two-stage combustion enables > 50% reduction but w = 33% is too high for all stoves
 Bad operation for long heating period with closed air inlet according to manual of stove 1 	Beech	w = 20% m _{log} = 1500 g	6600 (5500)	Closed air inlet not possible due to minimum air inlet; filled stove not tested with closed air inlet since not in accor- dance to manual	not possible due to two-stage combustion principle	

in stove 1: 2 x 750 g, in stove 2 slightly more, stove 3 fully filled
in stove 1: 3 x 1500 g, in stove 2 slightly more, stove 3 fully filled

uente: Thomas Nussbaumer Results from Tests on Wood Stoves and revised ecommendations for Emission wit Values for Chile Report for CONAMA and COSUDE

factores de Emisión

FE MP

Factores de Emisión Estufa Chilena de		
Combustión lenta		
Condiciones de uso g/kg de leña seca		
ideales	0,6	
típicas	3,0 - 14,4	
malas	79,3	

Fuente: Mediciones Thomas Nussbaumer

Factores Emisión en [g/kg de leña]		
Contaminante	Estufa o Salamandra	Combustión abierta
СО	34,8	34,8
NO _X	1,4	2,0
Partículas	7,3	16,6

Fuente: Cenma - Dictuc

Propuesta de medidas en Episodios Críticos

Medida 1:

 Restringir el uso de equipos de calefacción residencial a biomasa en el período 1 abril al 31 agosto, en zonas de protección.

Medida 2:

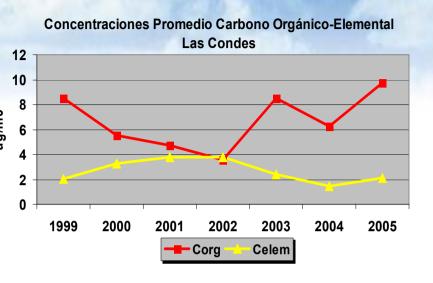
 Restricción de uso para todo artefacto que no cumpla la norma de emisión de emisión nacional.

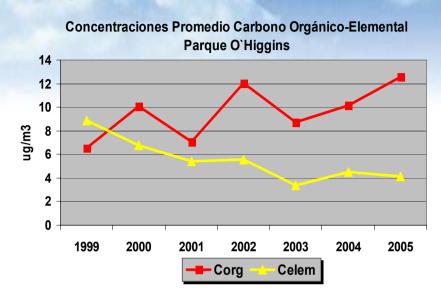
Medida 3 (escenario actual)

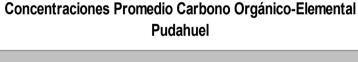
 Mantener escenario actual de restricción

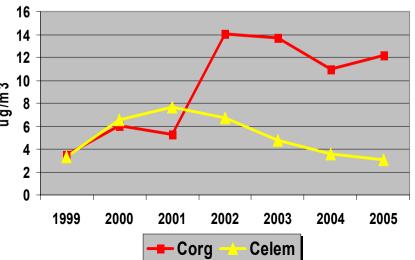
Medida 1 requiere:

 Análisis jurídico sobre atribuciones de prohibición y fiscalización (organismos públicos)

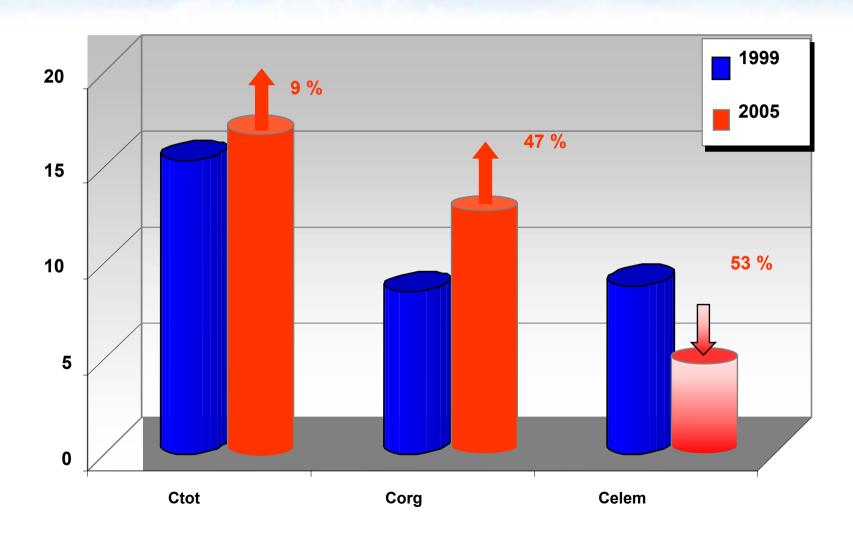

Medida 2 requiere:


 Implementar registro de modelos, etiquetado y procedimientos de control y fiscalización


Medida 3 requiere:


 Evaluar efectividad de esta medida.
 Desventajas en el control y fiscalización, omitir concepto "doble cámara y mecanismos de captación de partículas".

Concentraciones Carbono Orgánico y Elemental



Se presume que el aumento de las concentraciones de Carbono Orgánico podría deberse a la combustión de biomasa (entre otras fuentes)

Evolución de las Concentraciones de Corg y Celem

Comparación Concentraciones Promedios carbono Elemental y Orgánico

Antecedentes para el Rediseño de la Gestión de Episodios Fuentes estacionarias de la RM

2ª Reunión Comité Ampliado 13 octubre 2006 Descontaminación Atmosférica, CONAMA RM

Situación Actual

- → Paralizan fuentes cuyas concentraciones están sobre 32 mg/m³N (Pre-Emergencia) y 28 mg/m³N (Emergencia)
- → Además paralizan fuentes con muestreos vencidos y que no acreditan concentración.
- **→** Escenario 2006:
 - Restricción de Gas Natural casi permanente en invierno
 Titulares no miden con combustible de respaldo y algunos solicitaron plazo
 para realización de muestreos con GN.
 - À la Fecha aprox. 33 fuentes registran Combustible Alternativo
- A la luz de los precios relativos de combustibles (aún cuando se disponga de GNL en el futuro) los grandes consumidores de combustible en la Región Metropolitana se están cambiando a petróleos pesados.
- → Más de 5.000 fuentes no miden emisiones (Calderas y Hornos panificadores que no compensan emisiones). Se les estima la concentración en 30 mg/m³N (Diesel) y ó 15 mg/m³N (GN, GLP, Gas de ciudad o biogás)
- → Sólo 57 fuentes declaran usar combustibles "no limpios" tales como: biomasa, petróleos pesados, carbón, kerosene.
- Se debe buscar un mecanismo para transparentar la situación real

Registro Oficial de Fuentes Estacionarias

Preemergencia 2006:

- → 541 fuentes
- → 1404 kg/día
- → Aprox 35% Emisión MP Base datos Ffijas

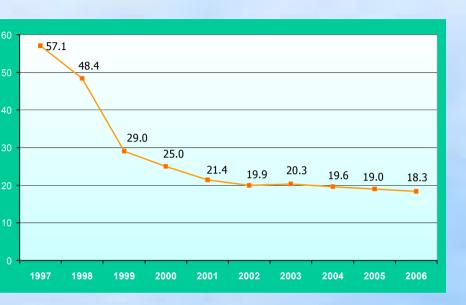
Según muestreo:

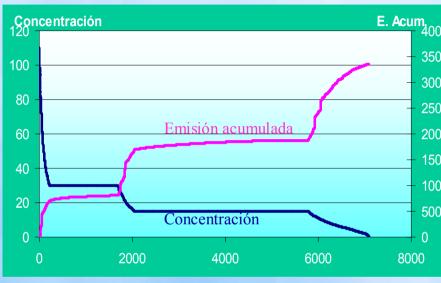
- →199 fuentes sobre 32 mg/m³N
- → 770 kg/día

Emergencia 2006:

- 2021 fuentes
- 1545 kg/día
- Aprox 35% Emisión MP Base datos Ffijas

Según muestreo o estimación:


- •1.712 fuentes sobre 28 mg/m3N
- •919 kg/día


Total Fuentes Estacionarias:

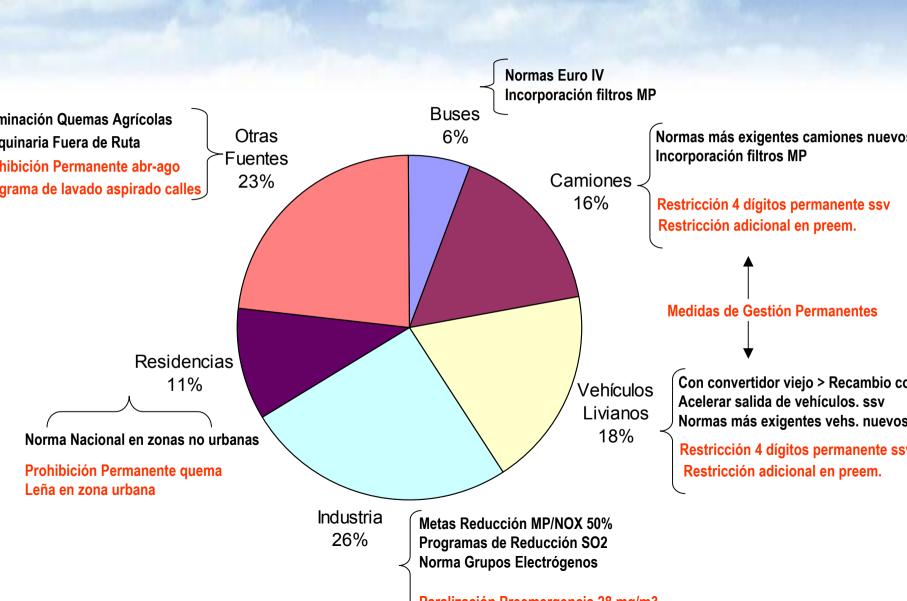
Casi 8.000 fuentes

Emisión Base datos FFijas: 3,3 t/día

Información Oficial registrada ante Autoridad Sanitaria

Concentración promedio histórica 1997-2005

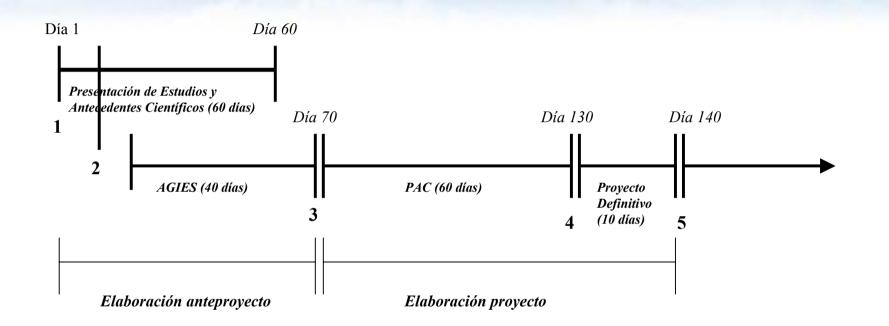
- Reducción significativa de concentración
- Mediciones con combustibles limpios (No miden con combustible de respaldo: Situación 2006)


Emisión – Concentración de MP 2006

- Fuentes con baja concentración agrupan las mayores emisiones
- Gran cantidad de fuentes con concentraciones estimadas

Comentarios

- → El criterio de paralización actual en fuentes que utilizan combustibles de respaldo "no limpios" no genera reducciones reales.
- → Se debe considerar en el criterio de paralización las condiciones de operación de las fuentes (por ej: procesos térmicos sin posibilidad de interrupción de operación, fuentes con posibilidad de programación temporal de operación, fuentes con posibilidad de modificar carga)
- → Autoridad Sanitaria está evaluando la información disponible, a partir de los cual se elaborará una propuesta para el sector.
- → Es fundamental definir un criterio de paralización realista, entendiendo que el sector industrial es el único junto con el transporte público que tiene techo de emisiones y metas de reducción para el sector.


Panorama General

CONAMA REGION METROPOLITANA

Plazos y Cronograma para la actualización del PPDA (Gestión de Episodios)

- 1. Publicación Resolución de inicio en Diario Oficial y diario de Circulación Nacional (1 de Septiembre)
- 2. Aprobación del Comité Operativo por parte del Consejo de Ministros (7 de Septiembre)
- 3. Presentación de Anteproyecto que será sometido a consulta pública (10 de noviembre)
- 4. Presentación de proyecto al Consejo Directivo.
- 5. Presentación de SEGPRES a Contraloría. (Enero 2007)